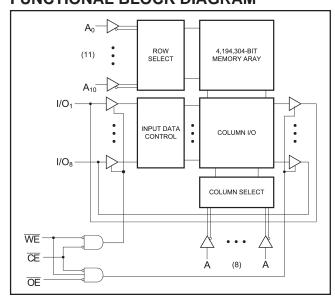
P4C1049/P4C1049L HIGH SPEED 512K x 8 STATIC CMOS RAM

FEATURES

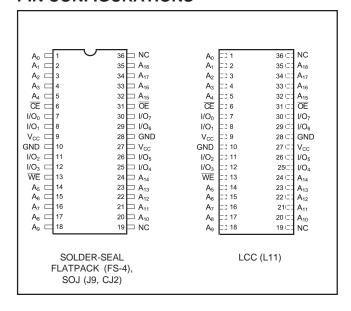
- High Speed (Equal Access and Cycle Times)
 - 15/20/25 ns (Commercial)
 - 20/25/35 ns (Industrial)
 - 20/25/35/45/55/70 ns (Military)
- Low Power
- Single 5V±10% Power Supply
- Easy Memory Expansion Using CE and OE Inputs
- Common Data I/O
- Three-State Outputs

- Fully TTL Compatible Inputs and Outputs
- Advanced CMOS Technology
- Automatic Power Down
- Packages
 - -36-Pin SOJ (400 mil)
 - —36-Pin FLATPACK
 - -36-Pin LCC (452 mil x 920 mil)

DESCRIPTION


The P4C1049 is a 4 Megabit high-speed CMOS static RAM organized as 512Kx8. The CMOS memory requires no clocks or refreshing, and has equal access and cycle times. Inputs are fully TTL-compatible. The RAM operates from a single 5V±10% tolerance power supply.

Access times as fast as 15 nanoseconds permit greatly enhanced system operating speeds. CMOS is utilized to reduce power consumption to a low level. The P4C1049 is a member of a family of PACE RAM™ products offering fast access times.


The P4C1049 device provides asynchronous operation with matching access and cycle times. Memory locations are specified on address pins $\underline{A_0}$ to $\underline{A_{18}}$. Reading is accomplished by device selection ($\overline{\text{CE}}$) and output enabling ($\overline{\text{OE}}$) while write enable ($\overline{\text{WE}}$) remains HIGH. By presenting the address under these conditions, the data in the addressed memory location is presented on the data input/output pins. The input/output pins stay in the HIGH Z state when either $\overline{\text{CE}}$ or $\overline{\text{OE}}$ is HIGH or $\overline{\text{WE}}$ is LOW.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
V _{cc}	Power Supply Pin with Respect to GND	-0.5 to +7	V
V _{TERM}	Terminal Voltage with Respect to GND (up to 7.0V)	-0.5 to V _{cc} +0.5	V
T _A	Operating Temperature	-55 to +125	℃

Symbol	Parameter	Value	Unit
T _{BIAS}	Temperature Under Bias	-55 to +125	℃
T _{STG}	Storage Temperature	-65 to +150	°C
P _T	Power Dissipation	1.0	W
I _{OUT}	DC Output Current	50	mA

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade(2)	Ambient Temperature	GND	V _{cc}
Military	−55°C to +125°C	0V	5.0V ± 10%
Industrial	-40°C to +85°C	0V	5.0V ± 10%
Commercial	0°C to +70°C	0V	5.0V ± 10%

CAPACITANCES⁽⁴⁾

 $V_{CC} = 5.0V, T_A = 25^{\circ}C, f = 1.0MHz$

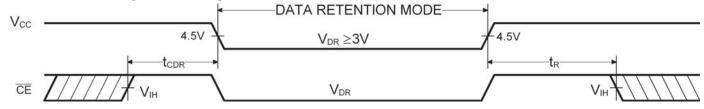
Symbol	Parameter	Conditions	Тур.	Unit
C _{IN}	Input Capacitance	$V_{IN} = 0V$	8	рF
C _{OUT}	Output Capacitance	$V_{OUT} = 0V$	8	pF

DC ELECTRICAL CHARACTERISTICS

Over recommended operating temperature and supply voltage $\!\!^{(2)}$

Symbol	Parameter	Test Condit	ione	P4C	1049	P4C	1049L	Unit
Cymbol	i arameter	rest condit	.10113	Min	Max	Min	Max	Oilit
V _{IH}	Input High Voltage			2.2	V _{cc} +0.3	2.2	V _{cc} +0.3	V
V _{IL}	Input Low Voltage			-0.3(3)	0.8	-0.3(3)	0.8	V
V _{HC}	CMOS Input High Voltage			V _{CC} -0.2	V _{cc} +0.3	V _{CC} -0.2	V _{cc} +0.3	V
V _{LC}	CMOS Input Low Voltage			-0.3(3)	0.2	-0.3(3)	0.2	V
V _{OL}	Output Low Voltage (TTL Load)	$I_{OL} = +8 \text{ mA}, V_{CC} = I$	Min.		0.4		0.4	V
V _{OH}	Output High Voltage (TTL Load)	$I_{OH} = -4 \text{ mA}, V_{CC} =$	Min.	2.4		2.4		V
		V _{cc} = Max.	Mil.	-10	+10	- 5	+5	μΑ
l _u	Input Leakage Current	$V_{IN} = GND \text{ to } V_{CC}$	Ind./Com'l.	<i>–</i> 5	+5	n/a	n/a	
		V _{cc} = Max.,	Mil.	-10	+10	<i>–</i> 5	+5	μA
I _{LO}	Output Leakage Current	CE = V _{IH} ,	Ind./Com'l.	- 5	+5	n/a	n/a	
		$V_{OUT} = GND \text{ to } V_{CC}$						
		$\overline{CE} \ge V_{IH}$	Mil.		45		40	mA
I _{SB}	Standby Power Supply	V _{cc} = Max,	Ind./Com'l.		40		n/a	
SB	Current (TTL Input Levels)	f = Max., Outputs O	pen					
		CE ≥ V _{HC}	Mil.		15		10	mA
	Standby Power Supply	V _{cc} = Max,	Ind./Com'l.		10		n/a	
I _{SB1}	Current	f = 0, Outputs Open						
	(CMOS Input Levels)	$V_{IN} \le V_{LC}$ or $V_{IN} \ge V_{LC}$						
		IIV LO IIV I						

N/A = Not Applicable


DATA RETENTION CHARACTERISTICS (P4C1049L Military Temperature Only)

Symbol	Parameter	Test Conditons	Min	Typ.* V _{cc} = 3.0V	Max V _{cc} = 3.0V	Unit
V _{DR}	V _{cc} for Data Retention		3.0			V
I _{CCDR}	Data Retention Current	$\overline{\text{CE}} \ge \text{V}_{\text{CC}} -0.2\text{V},$		2	3	mA
t _{CDR}	Chip Deselect to Data Retention Time	$V_{IN} \ge V_{CC} - 0.2V$	0			ns
t _R [†]	Operation Recovery Time	or V _{IN} ≤ 0.2V	t _{RC} §			ns

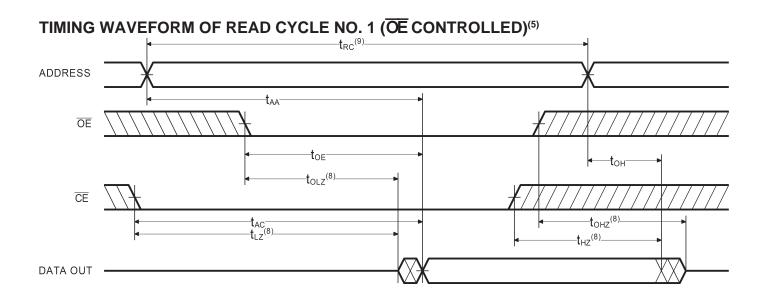
 $^{{}^{*}}T_{A} = +25^{\circ}C$

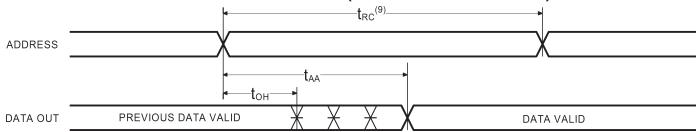
[†] This parameter is guaranteed but not tested.

POWER DISSIPATION CHARACTERISTICS VS. SPEED

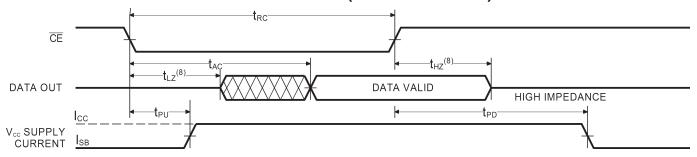
Symbol	Parameter	Temperature Range	-15	-20	-25	-35	-45	-55	-70	Unit
		Commercial	220	185	180	N/A	N/A	N/A	N/A	mA
I _{cc}	I _{cc} Dynamic Operating Current*	Industrial	N/A	190	185	175	N/A	N/A	N/A	mA
		Military	N/A	200	195	185	175	170	165	mA

 $^{^*}V_{CC} = 5.5 \text{V}$. Tested with outputs open. f = Max. Switching inputs are 0V and 3V. $\overline{\text{CE}} = V_{IL}$, $\overline{\text{OE}} = V_{IH}$.


 $[\]St_{RC}$ = Read Cycle Time


AC ELECTRICAL CHARACTERISTICS—READ CYCLE

 $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

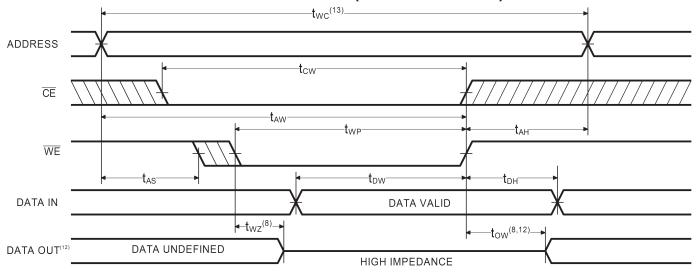

Sym.	Parameter	_	15	-2	20	-2	25	-3	35	-4	1 5	-4	55	-7	70	Unit
Oyiii.	T didilictor	Min	Max	Min	Max	Min	Max									
t _{RC}	Read Cycle Time	15		20		25		35		45		55		70		ns
t _{AA}	Address Access Time		15		20		25		35		45		55		70	ns
t _{AC}	Chip Enable Access Time		15		20		25		35		45		55		70	ns
t _{OH}	Output Hold from Address Change	3		3		3		3		3		3		3		ns
t _{LZ}	Chip Enable to Output in Low Z	3		3		3		3		3		3		3		ns
t _{HZ}	Chip Disable to Output in High Z		8		9		11		15		20		25		30	ns
t _{OE}	Output Enable Low to Data Valid		7		9		10		15		20		25		30	ns
t _{OLZ}	Output Enable Low to Low Z	0		0		0		0		0		0		0		ns
t _{OHZ}	Output Enable High to High Z		7		9		10		15		20		25		30	ns
t _{PU}	Chip Enable to Power Up Time	0		0		0		0		0		0		0		ns
t _{PD}	Chip Disable to Power Down Time		15		20		25		35		45		55		70	ns

TIMING WAVEFORM OF READ CYCLE NO. 2 (ADDRESS CONTROLLED)(5,6)

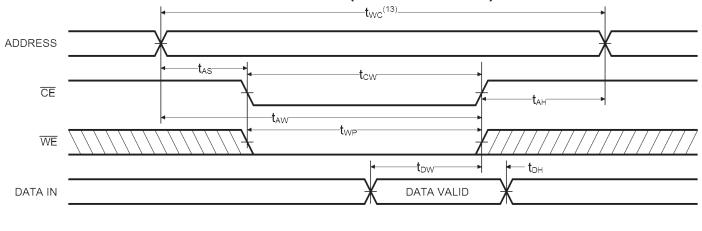
TIMING WAVEFORM OF READ CYCLE NO. 3 (CE CONTROLLED)(5,7)

Notes:

- Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to MAXIMUM rating conditions for extended periods may affect reliability.
- Extended temperature operation guaranteed with 400 linear feet per minute of air flow.
- 3. Transient inputs with $V_{\rm L}$ and $I_{\rm L}$ not more negative than -2.0V and -100mA, respectively, are permissible for pulse widths up to 20 ns.
- 4. This parameter is sampled and not 100% tested.
- 5. WE is HIGH for READ cycle.
- 6. CE is LOW and OE is LOW for READ cycle.
- 7. ADDRESS must be valid prior to, or coincident with $\overline{\text{CE}}$ transition LOW.
- Transition is measured ± 200 mV from steady state voltage prior to change, with loading as specified in Figure 1. This parameter is sampled and not 100% tested.
- 9. Read Cycle Time is measured from the last valid address to the first transitioning address.



AC CHARACTERISTICS—WRITE CYCLE


 $(V_{CC} = 5V \pm 10\%, All Temperature Ranges)^{(2)}$

Sym.	Parameter		15	-2	20	-2	25	-3	35	-4	15	-5	55	-7	0	Unit
Sylli.		Min	Max													
t _{wc}	Write Cycle Time	15		20		25		35		45		55		70		ns
t _{cw}	Chip Enable Time to End of Write	12		14		18		22		30		35		40		ns
t _{AW}	Address Valid to End of Write	12		14		16		20		25		35		40		ns
t _{AS}	Address Set-up Time	0		0		0		0		0		0		0		ns
t _{WP}	Write Pulse Width	12		14		16		22		25		30		35		ns
t _{AH}	Address Hold Time	0		0		0		0		0		0		0		ns
t _{DW}	Data Valid to End of Write	9		11		13		15		20		25		30		ns
t _{DH}	Date Hold Time	0		0		0		0		0		0		0		ns
t _{wz}	Write Enable to Output in High Z		8		10		11		15		18		25		30	ns
t _{ow}	Output Active from End of Write	3		3		3		5		5		5		5		ns

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED)(10,11)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (Œ CONTROLLED)(10)

DATA OUT(11) -

HIGH IMPEDANCE

Notes:

- 10. $\overline{\text{CE}}$ and WE must be LOW for WRITE cycle.
- 11. OE is LOW for this WRITE cycle to show t_{wz} and t_{ow}.
 12. If CE goes HIGH simultaneously with WE HIGH, the output remains
- in a high impedance state
- 13. Write Cycle Time is measured from the last valid address to the first transitioning address.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V				
Input Rise and Fall Times	3ns				
Input Timing Reference Level	1.5V				
Output Timing Reference Level	1.5V				
Output Load	See Figures 1 and 2				

Figure 1. Output Load

Note:

Because of the ultra-high speed of the P4C1049, care must be taken when testing this device; an inadequate setup can cause a normal functioning part to be rejected as faulty. Long high-inductance leads that cause supply bounce must be avoided by bringing the $V_{\rm CC}$ and ground planes directly up to the contactor fingers. A 0.01 μF high frequency capacitor is also required between $V_{\rm CC}$ and ground. To avoid

TRUTH TABLE

Mode	CE	ŌĒ	WE	I/O	Power
Standby	Н	Х	Х	High Z	Standby
Standby	Х	Х	Х	High Z	Standby
D _{OUT} Disabled	L	Н	П	High Z	Active
Read	L	L	Н	D _{OUT}	Active
Write	L	Х	L	High Z	Active

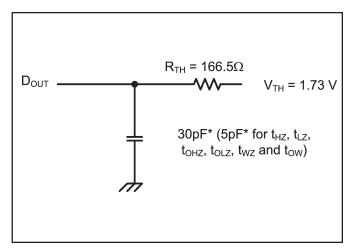
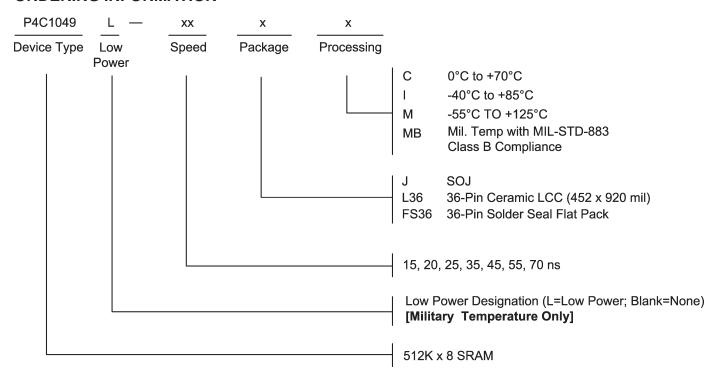
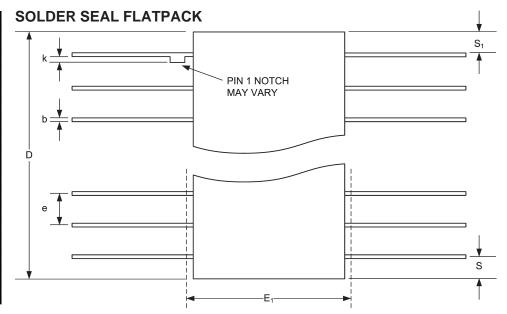
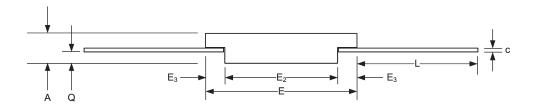
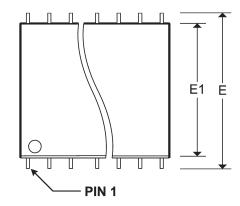



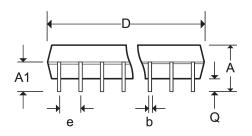
Figure 2. Thevenin Equivalent

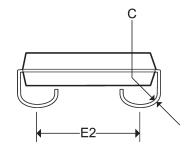

signal reflections, proper termination must be used; for example, a 50Ω test environment should be terminated into a 50Ω load with 1.73V (Thevenin Voltage) at the comparator input, and a 116Ω resistor must be used in series with D_{OUT} to match 166Ω (Thevenin Resistance).


^{*} including scope and test fixture.

ORDERING INFORMATION

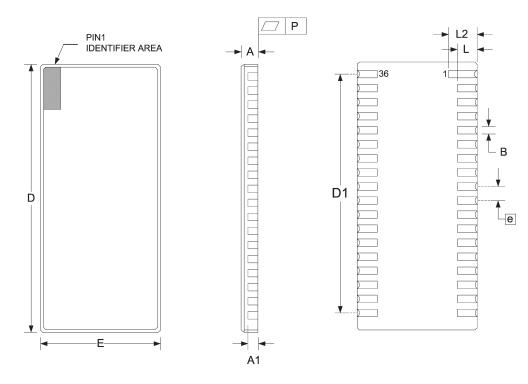

Pkg #	FS	6-4
# Pins	3	6
Symbol	Min	Max
Α	0.089	0.125
b	0.015	0.019
С	0.003	0.007
D	0.910	0.930
Е	0.505	0.515
E1	-	0.530
E2	0.385	0.395
E3	0.055	0.065
е	0.050	BSC
L	0.300	0.350
Q	0.015	0.038
S	-	0.045
М	-	0.0015
N	3	6

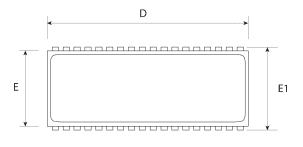


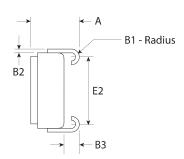


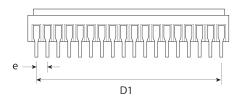
Pkg#	J9	
# Pins	36	
Symbol	Min	Max
Α	0.130	0.145
A1	0.082	-
b	0.015	0.020
С	0.007	0.013
D	0.920	0.930
е	0.050 BSC	
E	0.435	0.445
E1	0.395	0.405
E2	0.370 BSC	
Q	0.045	0.055

SOJ SMALL OUTLINE IC PACKAGE




Pkg #	L11	
# Pins	36	
Symbol	Min	Max
Α	0.080	0.100
A1	0.054	0.066
В	0.022	0.028
D	0.910	0.930
D1	0.840	0.860
Е	0.445	0.460
е	.050 BSC	
L	.100 TYP	
L2	0.115	0.135
Р	-	0.006
R	.009 TYP	


RECTANGULAR LEADLESS CHIP CARRIER



Pkg#	CJ2	
# Pins	36	
Symbol	Min	Max
Α	0.120	0.165
B1	0.030R TYP	
B2	0.020 REF	
B3	0.025	0.045
D	0.816	0.838
Е	0.419	0.431
E2	0.360	0.380
е	0.050 BSC	
E1	0.430	0.454

CERAMIC SOJ SMALL OUTLINE IC PACKAGE

REVISIONS

DOCUMENT NUMBER: SRAM128 DOCUMENTTITLE: P4C1049 / P4C1049L HIGH SPEED 512K x 8 STATIC CMOS RAM **ISSUE** ORIG. OF REV. **DESCRIPTION OF CHANGE CHANGE** DATE OR Oct-05 JDB New Data Sheet Α Jan-08 JDB Added CJ2 Ceramic SOJ package